10,545 research outputs found

    Dynamical heterogeneity in a highly supercooled liquid: Consistent calculations of correlation length, intensity, and lifetime

    Get PDF
    We have investigated dynamical heterogeneity in a highly supercooled liquid using molecular-dynamics simulations in three dimensions. Dynamical heterogeneity can be characterized by three quantities: correlation length ξ4\xi_4, intensity χ4\chi_4, and lifetime τhetero\tau_{\text{hetero}}. We evaluated all three quantities consistently from a single order parameter. In a previous study (H. Mizuno and R. Yamamoto, Phys. Rev. E {\bf 82}, 030501(R) (2010)), we examined the lifetime τhetero(t)\tau_{\text{hetero}}(t) in two time intervals t=ταt=\tau_\alpha and τngp\tau_{\text{ngp}}, where τα\tau_\alpha is the α\alpha-relaxation time and τngp\tau_{\text{ngp}} is the time at which the non-Gaussian parameter of the Van Hove self-correlation function is maximized. In the present study, in addition to the lifetime τhetero(t)\tau_{\text{hetero}}(t), we evaluated the correlation length ξ4(t)\xi_4(t) and the intensity χ4(t)\chi_4(t) from the same order parameter used for the lifetime τhetero(t)\tau_{\text{hetero}}(t). We found that as the temperature decreases, the lifetime τhetero(t)\tau_{\text{hetero}}(t) grows dramatically, whereas the correlation length ξ4(t)\xi_4(t) and the intensity χ4(t)\chi_4(t) increase slowly compared to τhetero(t)\tau_{\text{hetero}}(t) or plateaus. Furthermore, we investigated the lifetime τhetero(t)\tau_{\text{hetero}}(t) in more detail. We examined the time-interval dependence of the lifetime τhetero(t)\tau_{\text{hetero}}(t) and found that as the time interval tt increases, τhetero(t)\tau_{\text{hetero}}(t) monotonically becomes longer and plateaus at the relaxation time of the two-point density correlation function. At the large time intervals for which τhetero(t)\tau_{\text{hetero}}(t) plateaus, the heterogeneous dynamics migrate in space with a diffusion mechanism, such as the particle density.Comment: 12pages, 13figures, to appear in Physical Review

    Catalogue of 12CO(J=1-0) and 13CO(J=1-0) Molecular Clouds in the Carina Flare Supershell

    Full text link
    We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data cover a region of ~66 square degrees and were taken with the NANTEN 4m telescope, at spatial and velocity resolutions of 2.6' and 0.1 km/s. Decomposition of the emission results in the identification of 156 12CO clouds and 60 13CO clouds, for which we provide observational and physical parameters. Previous work suggests the majority of the detected mass forms part of a comoving molecular cloud complex that is physically associated with the expanding shell. The cloud internal velocity dispersions, degree of virialization and size-linewidth relations are found to be consistent with those of other Galactic samples. However, the vertical distribution is heavily skewed towards high-altitudes. The robust association of high-z molecular clouds with a known supershell provides some observational backing for the theory that expanding shells contribute to the support of a high-altitude molecular layer.Comment: To be published in PASJ Vol. 60, No. 6. (Issued on December 25th 2008). 35 pages (including 13 pages of tables), 7 figures. Please note that formatting problems with the journal macro result in loss of rightmost data columns in some long tables. These will be fixed in the final published issue. In the meantime, please contact the authors for missing dat

    Cosmological Dynamics of a Dirac-Born-Infeld field

    Full text link
    We analyze the dynamics of a Dirac-Born-Infeld (DBI) field in a cosmological set-up which includes a perfect fluid. Introducing convenient dynamical variables, we show the evolution equations form an autonomous system when the potential and the brane tension of the DBI field are arbitrary power-law or exponential functions of the DBI field. In particular we find scaling solutions can exist when powers of the field in the potential and warp-factor satisfy specific relations. A new class of fixed-point solutions are obtained corresponding to points which initially appear singular in the evolution equations, but on closer inspection are actually well defined. In all cases, we perform a phase-space analysis and obtain the late-time attractor structure of the system. Of particular note when considering cosmological perturbations in DBI inflation is a fixed-point solution where the Lorentz factor is a finite large constant and the equation of state parameter of the DBI field is w=1w=-1. Since in this case the speed of sound csc_s becomes constant, the solution can be thought to serve as a good background to perturb about.Comment: 24 pages, 7 figures, minor corrections, references adde

    Smc5/6 maintains stalled replication forks in a recombination-competent conformation

    Get PDF
    The Smc5/6 structural maintenance of chromosomes complex is required for efficient homologous recombination (HR). Defects in Smc5/6 result in chromosome missegregation and fragmentation. By characterising two Schizosaccharomyces pombe smc6 mutants, we define two separate functions for Smc5/6 in HR. The first represents the previously described defect in processing recombination-dependent DNA intermediates when replication forks collapse, which leads to increased rDNA recombination. The second novel function defines Smc5/6 as a positive regulator of recombination in the rDNA and correlates mechanistically with a requirement to load RPA and Rad52 onto chromatin genome-wide when replication forks are stably stalled by nucleotide depletion. Rad52 is required for all HR repair, but Rad52 loading in response to replication fork stalling is unexpected and does not correlate with damage-induced foci. We propose that Smc5/6 is required to maintain stalled forks in a stable recombination-competent conformation primed for replication restart

    The gas temperature in the surface layers of protoplanetary disks

    Full text link
    Models for the structure of protoplanetary disks have so far been based on the assumption that the gas and the dust temperature are equal. The gas temperature, an essential ingredient in the equations of hydrostatic equilibrium of the disk, is then determined from a continuum radiative transfer calculation, in which the continuum opacity is provided by the dust. It has been long debated whether this assumption still holds in the surface layers of the disk, where the dust infrared emission features are produced. In this paper we compute the temperature of the gas in the surface layers of the disk in a self-consistent manner. The gas temperature is determined from a heating-cooling balance equation in which processes such as photoelectric heating, dissociative heating, dust-gas thermal heat exchange and line cooling are included. The abundances of the dominant cooling species such as CO, C, C+ and O are determined from a chemical network based on the atomic species H, He, C, O, S, Mg, Si, Fe (Kamp & Bertoldi 2000). The underlying disk models to our calculations are the models of Dullemond, van Zadelhoff & Natta (2002). We find that in general the dust and gas temperature are equal to withing 10% for A_V >~ 0.1, which is above the location of the `super-heated surface layer' in which the dust emission features are produced (e.g. Chiang & Goldreich 1997). High above the disk surface the gas temperature exceeds the dust temperature and can can become -- in the presence of polycyclic aromatic hydrocarbons -- as high as 600 K at a radius of 100 AU. This is a region where CO has fully dissociated, but a significant fraction of hydrogen is still in molecular form. The densities are still high enough for non-negligible H_2 emission to be produced.....(see paper for full abstract)Comment: 28 pages, 8 figures, accepted for publication in Ap

    Particle Acceleration, Magnetic Field Generation, and Associated Emission in Collisionless Relativistic Jets

    Full text link
    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The ``jitter'' radiation from deflected electrons has different properties than synchrotron radiation which assumes a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 3 figures, contributed talk at the workshop: High Energy Phenomena in Relativistic Outflows (HEPRO), Dublin, 24-28 September 2007. Fig. 3 is replaced by the correct versio
    corecore